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Introduction 

 

One of the main challenges in robot navigation in an unknown environment is the formulation of an effective 

algorithm for obstacle avoidance. Development of an effective algorithm requires repetitive and time-consuming 

testing in the relevant environment with the likelihood of hardware glitches skewing the test results. To avoid 

such problems, at least during the initial stages of algorithm development, a software simulator can be used. A 

simulator is also a useful tool for students seeking to explore algorithm development without having to spend 

weeks wrestling with hardware availability/development/reliability issues. 

 

This paper describes a software simulator that was successfully developed by the present author to allow an end-

user to: 

1. Create and test custom fuzzy rules. 

2. Auto-generate fuzzy rules for wall-following using a genetic algorithm. 

3. Explore targeted navigation using sensor proximity data and the A* algorithm. 

 

Each of these purposes is described in a separate section, following the simulator specification section below. 
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General Simulator Specifications 

 

1. Any bitmap image with white background and non-white obstacles can be loaded as a robot maze. An 

example of a loaded bitmap for the first floor of the Maseeh building is shown in Figure 1. 

 

FIGURE 1: Maseeh building floor plan. 

 

2. The simulator overlays the user-selected maze bitmap with a grid of user-configurable density. The grid 

density determines the granularity of obstacle mapping and the size of the search space (i.e. number of 

grid cells). However, the robot moves at the granularity of pixels not grid cells, and therefore can exhibit 

smooth motion regardless of grid size. This is reflective of real robot motion, which is not necessarily tied 

to the logical mapping of search space. 

3. Robot start/end points can be set by a mouse-click at any point on the bitmap image. 

4. Robot speed is user adjustable; however, the time required for CPU processing of the navigational 

algorithm and for screen refresh limits the maximum speed of the robot. 

5. The robot size (radius) is configurable by the end-user.  
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6. Any number of proximity sensors can be added to the robot. Each proximity sensor has a user 

configurable direction, beam spread, and range (as shown in Figure 2). Upon contact of a sensor beam 

with a non-white bitmap pixel, the grid cell overlaying the bitmap obstacle is painted black to denote a 

known obstacle. 

 

 

FIGURE 2: Proximity sensor configuration page. 

 

7. All configured sensors, memberships, rules, and actuator assignments are saved to disk in between user 

sessions. 
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User Development of Custom Fuzzy Rules 

 

The paper titled “Application of Fuzzy Logic for Robot Navigation” (see Appendix A) by the present author 

provides a discussion of the basic concepts of fuzzy logic, which are used in the simulator. 

 

Any number of input/output membership functions can be dynamically created by the user. A plot area facilitates 

creation of user drawn plots (curved lines are smoothed using Bezier curves) with configurable crisp-axis limits, 

as shown in Figure 3. 

 

 

FIGURE 3: Membership function configuration page. 

 

Rules can be dynamically created by the user. Each rule created by the user must correspond by name to one of 

the output membership functions. Since any number of output membership functions can be created by a user, any 

number of rules is possible. A valid rule statement includes operands that are either: 

1. Any input membership function name paired with any proximity sensor name. The evaluation of this 

operation results in a decimal value between 0 and 1 inclusive (µ), which represents the degree of 

membership of the sensor’s proximity reading in the set represented by the input membership function’s 

name. 

2. A decimal value between zero and one inclusive. 

 

The built-in fuzzy parser will iteratively parse nested logic statements of any depth. Generic logic operators 

(AND, OR, NOT) and custom operators (GREATER-THAN, LESS-THAN) can be used in conjunction with the 

membership functions, sensor input readings, and parentheses for nesting levels, as shown in Figure 4. 
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FIGURE 4: Rule configuration page. 

 

Rule statement evaluation consists of the following steps: 

1. Each operand is reduced to a decimal value between zero and one inclusive. 

2. Fuzzy logic operators are applied to the operands in a deepest-first nesting order as indicated by 

parentheses placement. The application of logic operators to operands reduces the rule statement to a 

single decimal value between zero and one inclusive (µpredicate). 

3. The crisp value for the µpredicate is determined using the output membership function that corresponds to 

the rule’s name. This crisp value is the evaluation of the rule. 

 

Two built-in actuators provide complete 2D navigational control of the robot: robotForward and robotRotate. The 

crisp evaluations of all rules assigned to an actuator are summed to provide the actuator’s resultant action. For 

example, if the robotRotate actuator evaluates to -23, the robot will rotate counter-clockwise by -23°. 
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FIGURE 5: Actuator configuration page. 

 

An example of simple wall-following behavior is shown in Figure 6. The following rules were used: 

goLeft = near [leftDistance] < 0.6 

goRight = near [leftDistance] > 0.7 

goForward = ! near [frontDistance] 

 

 

FIGURE 6: Robot navigation within simulated Maseeh building using simple wall-following rules. 
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Generation of Fuzzy Rules Using a Genetic Algorithm 

 

The paper titled “Evolution of Simulated Millipede Gait” (see Appendix B) by the present author provides a 

discussion of a double mutation genetic algorithm, which is used in the simulator. 

 

A built-in genetic algorithm permits evolution of fuzzy rules for wall-following behavior. The genetic pool size, 

number of generations, and number of robot steps performed per fitness function test are user configurable, as 

shown in Figure 7. 

 

 

FIGURE 7: Evolution configuration page. 

 

Double mutation was used to evolve each of the following rules: goLeft, goRight, goForward. Mutation was 

selected because it can mutate specific elements with a rule without invalidating rule syntax. Double mutation was 

selected because of its better performance over single mutation. Two random elements within a rule were selected 

and if those elements corresponded to a membership/sensor pair, then one of the following elements was 

substituted in its place: 

1. A random generated membership/sensor pair  

2. 0 

3. 1 

However, if the randomly selected elements contained an operator or parentheses, then the random location was 

incremented until a membership/sensor pair element was encountered. The double mutation code is shown in 

Figure 8. 
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FIGURE 8: Double mutation code. 

 

The best-evolved rule set, shown in Figure 7, simplifies to the following: 

1. goLeft = ( ( near [rightDistance] | mid [rightDistance] ) & ( ! near [frontDistance] & ! mid [frontDistance] 

)) 

2. goRight = ( ( ! mid [rightDistance] | ! near [rightDistance] | near [rightDistance] ) | ( ! mid [frontDistance] 

& ! near [frontDistance] & near [frontDistance] ) | ( near [frontDistance] & ! mid [leftDistance] ) ) 

3. goForward = 1 

 

Each rule can be interpreted as follows: 

1. Left rule: turn left if midway-close to a right-side obstacle, but only if not too-close to a front obstacle.  

2. Right rule: turn hard-right whenever too-close or too-far from a right-side obstacle, or too-near or too-far 

from a front obstacle. 

3. Forward rule: always go forward 
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The combination of those rules can be interpreted as follows: If midway-close to a right-side obstacle and not too-

close to a front obstacle then turn left sharply. In all other situations, but not that one, turn right very sharply. This 

explains the right-wall-following behavior because the right rule dominates in all but a midway band of proximity 

from the right wall. This also explains the single loop of the robot when it nears an inside corner because the left 

rule weakens as a front obstacle grows closer, and the right rule drives the robot sharply into the corner. However, 

the radius of the right turn is so sharp that the robot does not collide with the wall corner, but instead loops out of 

the corner, subsequently connecting with the perpendicular wall away from the corner and further continuing its 

right-wall-following behavior. The robot’s path for this evolved rule set is shown in Figure 9. 

 

The logistics of this evolved rule set are remarkably sophisticated and non-obvious to novice fuzzy rule 

developers. This highlights the power of genetic algorithms to generate a sophisticated rule set for wall-following 

in a fraction of the time it would take to manually conceive it. 

 

 

 

FIGURE 9: Robot wall-following navigation using best-evolved rule set.  
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Targeted Navigation Using Sensor Proximity Data and A* Algorithm 

 

The paper titled “Shortest Path through Maze” (see Appendix C) by the present author provides an extensive 

discussion of the A* search algorithm, which is used in the simulator.  

 

Targeted navigation features a built-in navigation strategy, using the A* algorithm, which demonstrates successful 

obstacle avoidance, backtracking, and shortest distance approximation to a specified end point in the maze.  

 

Prior to each step through the maze, the robot examines the sensor data to determine whether an obstacle is 

detected. If so, it is added to a known-obstacle list (and colored black in the simulator). Prior to discovering an 

obstacle via its sensors, the robot is completely unaware of the existence of the obstacle. This is illustrated in 

Figure 10, where the robot’s shortest path projection based on the A* algorithm (shown in orange) bends away 

from known obstacles, but cuts straight through unknown obstacles. Note that the purple path indicates the robot’s 

previous path, the pale blue areas indicate the closed-list search nodes, and the medium blue band marks the open-

list search nodes. 

 

 

FIGURE 10: An example of targeted navigation using the A* algorithm. 

 

The robot takes its next step along the path routed by the A* algorithm. If a new obstacle is detected by any 

sensor because of that step, the robot will halt and rerun the A*algorithm from its new position with its updated 
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known-obstacle-list. Thus, the robot advances rapidly through open space, but has to slow down in obstacle-rich 

environments in order to rerun the A* algorithm each time the known-obstacle-list changes. 

 

Robot path backtracking is shown in Figure 11. Note that the backtracking behavior exhibited by the dead-end 

purple paths is NOT backtracking using saved open-list nodes, because the open-list is cleared between each run 

of the A* algorithm from a different start position. This is a necessity because the open-list is only valid for a 

given set of known obstacles. However, true backtracking using the open-list is implemented within each run of 

the A* algorithm in order to generate the next shortest path approximation to the end point. 

 

 

FIGURE 11: Robot path backtracking. 
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Conclusion 

 

The simulator for robot navigation successfully demonstrates the applicability of fuzzy logic, genetic algorithms, 

and search strategies to robot navigation in an unknown environment.  

 

The simulator would be significantly enhanced through incorporation of Kalman filters, neural nets, and image 

processing through directionally-sensitive embedded images in the maze (i.e. if the robot faces a doorway at a 

specified grid location with a specified orientation, then a pre-specified embedded image will be fed into the 

robot’s camera for image-analysis). 

 

The simulator is a professionally written robust C# application compatible with any Windows environment 

(native, virtual, 32-bit, or 64-bit). For release licenses, the author may be contacted at tristan@electronic.io. 
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APPENDIX A 

 

APPLICATION OF FUZZY LOGIC FOR ROBOT NAVIGATION 

 

Introduction 

Boolean logic applied to robotic navigation permits only two potential outcomes for each robot decision. In 

contrast, fuzzy logic allows unlimited outcomes for each robot decision.  

 

For example, a fuzzy logic rule might state: “turn-right if front-proximity is close and left-proximity is close 

and right-proximity is far”, where: 

 front-proximity, left-proximity, and right-proximity are sensor readings. 

 close and far are input membership functions that flexibly translate a specific proximity (crisp value) in a 

defined sensor reading range to a decimal value in the range of 0 to 1 (degree of membership). 

 turn-right is an output membership function that flexibly translates a decimal value in the range of 0 to 1 

(degree of membership) into a clockwise rotation in the range of 0 - 90° (crisp value). 

 AND is a fuzzy logic operator that typically asserts the minimum of the operands. 

If the evaluation of all conditions is satisfied to any extent, then the robot will execute a clockwise turn in the 

range of 0 to 90°, with the exact rotation dependent on the degree to which conditions are satisfied. In this way, 

a single fuzzy logic rule can generate smooth robot navigation.  

 

An example of a fuzzy logic system used to solve a robot navigational decision (degree of robot rotation) is given 

in Fig. 1. 

 

left-proximity

front-proximity

right- proximity

Go-Left rule (weight = 1):
turn-left if left-proximity is far and front-

proximity is close and right-proximity is close

Go-Right rule (weight = 1):
turn-right if left-proximity is close and front-
proximity is close and right-proximity is far

Do-U-turn-rule (weight = 1):
turn-around if front-proximity is close and left-
proximity is close and right-proximity is close

∑ Robot rotation

θ

PARALLEL PROCESSING 
OF FUZZY RULES

CRISP 
INPUTS

SINGLE 
CRISP 
OUTPUT

WEIGHTED 
COMBINATION 
OF MULTIPLE 
RULES

θ1 

θ2 

θ3 

DEFUZZIFY
RULES

 

Figure 1. Triple input, triple rule, single output fuzzy system. 
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Crisp Inputs 

A crisp value is a real non-scaled value, such as a robot’s unobstructed front distance in feet. The system shown in 

Fig. 1 has three crisp inputs that provide the unobstructed distance on a robot’s left, front, and right sides. 

 

Parallel Processing of Fuzzy Rules 

A fuzzy rule consists of one or more conditions that when combined comprise the rule’s predicate which 

determines the rule’s consequence. For example, the predicate of the rule Go-Right is “if front-proximity is 

close and left-proximity is close and right-proximity is far”, and the consequence of the rule is turn-right. Each 

condition independently evaluates to a degree of membership µ in a set specified by that condition. For example, 

“left-proximity is far” evaluates to left-proximity’s degree of membership µfar in the set far. 

 

µ is in the range of 0 to 1, where a µ of 0 indicates that a condition was not satisfied to any extent, a µ of 1 

indicates full satisfaction of a condition, and a fractional µ indicates the partial degree to which a condition was 

satisfied.  

 

In the example shown in Fig. 1, each rule has three conditions that individually need to be evaluated. For 

example, the Go-Left rule requires evaluation of “left-proximity is far”, “front-proximity is close”, and “right-

proximity is far”. The terms close and far represent fuzzy sets to which left-proximity, front-proximity, and 

right-proximity may belong to some degree. The exact extent to which left-proximity, front-proximity, and 

right-proximity belong to the close and far sets is evaluated using the input membership function for each set. 

 

The set close interprets an input parameter (representing proximity) according to the input membership function 

shown in Figure 2. For example, for a proximity of 8ft, the function outputs a µclose value of 0.2. This indicates 

that this proximity value is a marginal member of the set. 
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Figure 2. Input membership function for the close set. 

 

The set far interprets an input parameter (representing proximity) according to the input membership function 

shown in Figure 3. For example, for a proximity of 8ft, the function outputs a µfar value of 0.8. This indicates that 

this proximity value is a strong member of the set. 

 

 

Figure 3. Input membership function for the far set. 

 

It is significant that proximity values in the non-inclusive range 0 to 10ft have partial membership in both the 

close and far fuzzy sets, as will be discussed later. 

 

Fuzzy logic operators determine the way in which multiple conditions will combine to yield an overall degree of 

membership for the rule’s predicate. This degree of membership applies to the set represented by the rule’s 

consequence. For example, the predicate of the Go-Right rule evaluates to a degree of membership µpredicate in the 

turn-right set.  

 

Common fuzzy logic operators are AND, OR and, NOT, where: 

 AND typically asserts the minimum of the operands. 

 OR typically asserts the maximum of the operands. 

 NOT inverts the associated operand (i.e. evaluates to 1 minus the operand value). 

 

The use of fuzzy logic operators to determine µpredicate for each of the Go-Left, Go-Right, and Do-U-Turn rules is 

shown in Figs. 4A, 4B, and 4C respectively. The three rules are processed in parallel to yield 3 separate µpredicate 

values. 
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Crisp input 

names 

Crisp 

input 

values  

membership 

in close set 

µclose 

membership 

in far set 

µfar 

left-proximity is far AND front-proximity 

is close AND right-proximity is close 
µpredicate 

left-proximity 8 0.2 0.8 

min ( 0.8, 0.8, 0.5 ) 0.5 front-proximity 2 0.8 0.2 

right-proximity 5 0.5 0.5 

Figure 4A. Application of the fuzzy logic AND operator to the Go-Left rule. 

 

Crisp input 

names 

Crisp 

input 

values  

membership 

in close set 

µclose 

membership 

in far set 

µfar 

left-proximity is close AND front-

proximity is close AND right-proximity is 

far 

µpredicate 

left-proximity 8 0.2 0.8 

min ( 0.2, 0.8, 0.5 ) 0.2 front-proximity 2 0.8 0.2 

right-proximity 5 0.5 0.5 

Figure 4B. Application of the fuzzy logic AND operator to the Go-Right rule. 

 

Crisp input 

names 

Crisp 

input 

values  

membership 

in close set 

µclose 

membership 

in far set 

µfar 

left-proximity is close AND front-

proximity is close AND right-proximity is 

close 

µpredicate 

left-proximity 8 0.2 0.8 

min ( 0.2, 0.8, 0.5 ) 0.2 front-proximity 2 0.8 0.2 

right-proximity 5 0.5 0.5 

Figure 4C. Application of the fuzzy logic AND operator to the Do-U-Turn rule. 

 

Defuzzify Rules 

In the example shown of Fig. 1, the Go-Left rule is defuzzified to yield a crisp value that is determined by the 

degree of membership of its µpredicate in the turn-left set. Similarly, the Go-Right rule is defuzzified to yield a 

crisp value that is determined by the degree of membership of its µpredicate in the turn-right set. Finally, the Do-U-

Turn rule is defuzzified to yield a crisp value that is determined by the degree of membership of its µpredicate in the 

turn-around set. The crisp value for a given µpredicate is determined using the output membership function for the 

set to which the degree of membership applies. 
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The output membership function shown in Figure 5, specifies a crisp value for each degree of membership µpredicate 

in the turn-left set. For example, given a µpredicate of 0.5, the function outputs a crisp value of -45°. This crisp 

value is a middle member of the set. 

 

 

Figure 5. Output membership function for the turn-left set. 

 

The output membership function shown in Figure 6, specifies a crisp value for each degree of membership µpredicate 

in the turn-right set. For example, given a µpredicate of 0.2, the function outputs a crisp value of +18°. This µpredicate 

value is a marginal member of the set. 

 

 

Figure 6. Output membership function for the turn-right set. 

 

The output membership function shown in Figure 7, specifies a crisp value for each degree of membership µpredicate 

in the turn-around set. For example, given a µpredicate of 0.2, the function outputs a crisp value of 0°. This µpredicate 

value is a non-member of the set. 
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Figure 7. Output membership function for the turn-around set. 

 

In the case of a single rule fuzzy system the resulting crisp value found from the output membership function 

would be the single crisp output of the fuzzy system. However, in the example shown of Fig. 1, the three rules are 

processed in parallel and need to be combined in order to generate the single crisp output of the fuzzy system.  

 

Weighted Combination of Multiple Fuzzy Rules 

In the example shown of Fig. 1, each fuzzy rule weighting is unity and therefore a multiplication factor is not 

applied to the crisp value of any rule. 

 

The combination of multiple crisp values can occur in various ways. In the case of the example shown in Fig. 1, a 

straight forward summation is used, as shown in Figure 8. 

 

Crisp input 

names 

Crisp 

input 

values  

Rule name 
µ of the 

predicate 
crisp value ∑  robot rotation 

leftProximity 8 Go Left Rule 0.5 -45° 

-27° turn 27° to the left frontProximity 2 Go Right Rule 0.2 +18° 

rightProximity 5 Do U-Turn Rule 0.2 0° 

Figure 8. Combination of three rules to generate a single crisp output. 

 

Another method for combination of fuzzy rules truncates each output membership function plot at the µpredicate for 

that plot, aggregates the truncated plot areas, and then calculates the centroid of the aggregated area. The crisp 

value of the centroid (x-coordinate) is then used as the single crisp output. 
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Discussion 

The parallel processing of rules potentially allows multiple rules to influence the output crisp value, depending on 

each rule’s crisp evaluation and weighting. This helps avoid sharp switching between opposing rules which could 

result in non-smooth crisp output transitions.  

 

However, to harness the benefits of parallel rule processing, the fuzzy system designer must ensure overlapping 

transition domains within the membership functions of diametrically opposed sets. For example, proximity values 

in the non-inclusive range 0 to 10ft have partial membership in both the close and far sets. This is shown in Fig. 

9, which is a plot of superimposed input membership functions for the close and far sets. 

 

 

Figure 9. Overlapping transition domains for the input membership functions for the close and far sets. 

 

Note that the input membership function for the far set is equivalent to the input membership function of a NOT 

close set. Thus, the rule “turn-right if front-proximity is close and left-proximity is close and right-proximity 

is far” could equivalently have been phrased “turn-right if front-proximity is close and left-proximity is close 

and right-proximity is NOT close”. 

 

Conclusion 

The application of fuzzy logic to robot navigation permits vastly more complex and fine grained robot actuation 

than could normally be achieved through the use of Boolean logic. The challenge with fuzzy logic is to derive a 

meaningful set of rules that meets the intended goal of robot navigation in a particular environment. Rule 

generation is sufficiently complex and time consuming to warrant development via a neural network or genetic 

algorithm. Ideally, rule generation would occur in a simulated environment, where time and mechanical issues are 

less likely to impede rule development.   
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APPENDIX B 

 

EVOLUTION OF SIMULATED MILLIPEDE GAIT 

 

Introduction 

The relative performance of crossover, mutation, double crossover, and double mutation genetic 

algorithms in generating an optimal cyclic forward gait for a simulated millipede was explored. A 

graphical software program written in C# simulated the motion of a millipede of varying physical 

characteristics (e.g. spine length, leg number, leg size, leg spacing). Matlab was used to create 3D plots 

that represent the performance of the tested genetic algorithms. 

 

Millipede Leg Position Genome 

A snapshot of a millipede's legs placement provides an angle (θ) for each leg. A 0° leg angle describes a 

leg perpendicular to the spine. A rotational limit of ± 20° was selected to avoid crossed legs. Forward 

leg rotation is represented by a positive angle. Each leg angle was expressed as a 5-bit binary string, 

termed a leg position gene. The concatenation of all leg position genes in fixed leg order results in a 

binary string, termed a genome. For example, if a millipede has 6 legs, a 30-bit binary string captures the 

millipede's leg positions. The initial/reset leg-state of a millipede is a 30-bit binary string of zeros (all 

legs are perpendicular to the spine i.e. straight out).  

 

Millipede Motion 

Millipede motion occurs by cyclic execution of the following two steps: 

1. Rotational movements of each leg of the millipede (i.e. represented by a genome). The spine 

does not move, and is grounded. 

2. A body motion (forward/backward/rotation), which resets each leg to perpendicular. 

Step 1 represents the millipede reaching with its legs, and step 2 represents the resulting motion of the 

millipede’s body as it straightens out its legs.  

 

The transformation of the legs rotations into various millipede body motions for a millipede with N pairs 

of legs of length L is determined as follows: 

The forward motion of each leg (  ) is given by:       

Linear motion of left side of millipede (      ) is given by: 
∑     
     

 
 



 

22 

 

Forward motion of right side of millipede (       ) is given by: 
∑     
      

 
 

Forward motion of the millipede occurs if:                        

Backward motion of the millipede occurs if:                        

Clockwise motion of the millipede occurs if:                        

Counter-clockwise motion of the millipede occurs if:                        

 

If the conditions for backward, forward, clockwise, or counter-clockwise motion are satisfied: 

The magnitude of forward motion is given by:        (              )  

The magnitude of backward motion is given by:        (              )  

The magnitude of clockwise motion is given by:                 

The magnitude of counter-clockwise motion is given by:                

 

Millipede Fitness 

Millipede fitness was arbitrarily evaluated as the magnitude of forward motion. The fittest leg position 

genome has a +20° rotation for each leg, since a millipede that reaches forward with its legs to the 

greatest extent will move forward the furthest when its legs are reset. E.g. for a 6 legged millipede, the 

optimal gait was represented by the genome: “10100 10100 10100 10100 10100 10100” (gaps for visual 

clarity).  

 

Note that a different fitness criteria could have just as readily been selected (e.g. backwards or rotational 

motion). 

 

Evolutionary Process 

The following steps describe the generalized evolutionary process: 

1. Random rotational leg motions (genes) were generated for a millipede and the resulting genome 

placed in a genome pool. The process was repeated until a genome pool of       genomes was 

created. The genome pool was then evolved over       generations using a particular genetic 

algorithm. The genome from the resulting genome pool with the highest genome fitness was 

recorded. This entire step was repeated 100 times and the average of the recorded highest 

genome fitness values was determined for the given       and      . 
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2. Step 1 repeated for every combination of       (odd value) and      (even value) in the domain: 

           and           . The average highest genome fitness value for each unique 

combination of       and       was then plotted using Matlab. 

 

3. Steps 1 & 2 were performed for each of the genetic algorithms: 

a. Random (no genetic algorithm applied to each generation). 

b. Crossover 

c. Double crossover 

d. Mutation 

e. Double mutation 

 

Description of Genetic Algorithms 

The application of each genetic algorithm followed the form: 

1. Remove the parent genome with the lowest fitness from the pool. This results is a pool size of: 

       . This is an even number due to the odd values for pool sizes that were used. 

2. Make a copy of the parent genome with the highest fitness. 

3. Evolve each parent genome (in the case of mutation or double-mutation), or pair of genomes (in 

the case of crossover or double-crossover), using the given genetic algorithm. This does not 

change the pool size, which is:        . 

4. Add in the parent genome with the highest fitness. This restores the pool size to:      . 

 

The particular evolution action on each genome is described below. In all evolutionary strategies, if the 

decimal value of any evolved gene in a child genome was outside the range ± 20, it was truncated to fall 

within that range. 

 

Crossover 

Two parent genomes were combined to create two child genomes as shown below.  
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Double crossover 

Two parent genomes were combined to create two child genomes as shown below: 

 

 

Mutation 

A bit in the genome bit string was inverted at a random position in the bit string. 

 

Double Mutation 

Two bits in the genome bit string were inverted at two random positions in the bit string. 

 

Results 

The fitness value for each pool size and number of evolution generations are plotted below for each 

evolutionary strategy. The highest fitness value possible (fastest forward motion) was normalized to a 

value of 10.  

 

The minimum pool size and number of generations required to achieve the highest fitness value for each 

evolutionary strategy is summarized in the table below: 

 

6-Legged 

Millipede 
Random Crossover Mutation 

Double 

Crossover 

Double 

Mutation 

Pool size none 35 10 10 8 

Generations none 37 19 10 8 

 

The most effective evolutionary strategy was double mutation, which required the smallest genome pool 

size (8) and least number of generations (8) to achieve optimal fitness. 

 

The least effective evolutionary strategy was random evolution, which never reached optimal fitness 

within the pool-size and generations domain. 

 



 

25 

 

Matlab Plots For 6-Leg Millipede 
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APPENDIX C 

 

SHORTEST PATH THROUGH MAZE 

 

Introduction 

A path finding program was implemented to explore the performance of the Dijkstra (a simplified 

version) and A* search algorithms. Unlike breadth-first, depth-first, and iterative depth-first searches, 

the Dijkstra and A* searches are active search strategies (i.e. employ heuristics). At any current node, 

possible next nodes (child/candidate nodes) are all the adjacent nodes that are not off-map or coincident 

with maze walls. Dijkstra and A* search algorithms use different heuristics to select the next node in the 

search path. 

 

Dijkstra Algorithm 

Dijkstra’s algorithm selects a next node from a candidate set of possible next nodes based on a candidate 

node’s distance from the search start point. The candidate node with the shortest linear distance from the 

start point is selected. Thus in an open space search, nodes in all the different directions are explored 

uniformly in an expanding circular manner. This search strategy is algebraically expressed as: 

f(n) = g(n). g(n) measures the unweighted negative distance of any node n to the start node, and f(n) is 

the fitness function. The shortest distance is less negative and therefore fitter. 

 

The program code to implement a simplified Dijkstra algorithm is shown below. 
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A* Algorithm 

The A* algorithm selects a next node from a candidate set of possible next nodes based on a candidate 

node’s distance from both the search start and end points. The candidate node with the shortest linear 

distance from the start point plus the weighted shortest linear distance from the endpoint is selected. A 

weight > 1 (3 is ideal) is required in order to keep the search more focused on the endpoint than the start 

point. This search strategy is algebraically expressed as: 

f(n) = g(n) + h(n). g(n) is the unweighted the negative distance of any node n to the start node, h(n) is 

the weighted negative distance of any node n to the end node, and f(n) is the fitness function.  

 

The program code to implement the A* algorithm is shown below. 
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Maze Design 

The Maseeh building 1st floor and Cramer Hall 1
st
 floor plans were used to auto-generate mazes. Sealed 

areas include stairwells, bathrooms, utility areas, and outdoors. 

 

Search Results 

Example searches using Dijkstra’s algorithm and the A* algorithm are shown below. 
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Simulated Maseeh Building 1st Floor, navigated using Dijkstra’s algorithm: 

 

Simulated Maseeh Building 1st Floor, navigated using A* algorithm: 
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Simulated Cramer Hall 1st Floor, navigated using Dijkstra’s algorithm: 

 

Simulated Cramer Hall 1st Floor, navigated using A* algorithm: 
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Yellow areas indicate previously traversed nodes (closed list). Light blue areas indicate non-traversed 

potential candidate nodes (open list). The dark orange line indicates the discovered path from start to 

finish points (result list). 

 

Following is an analysis of the search results for the Maseeh Building 1
st
 Floor search: 

MASEEH BLDG 
Total Searchable 

Nodes (NS) 

Total Traversed 

Nodes (NT) 

Search Path 

Node Length 
Ratio NS/NT 

Dijkstra 20228 18514 233 91.5% 

A* 20228 2031 220 10.0% 

 

Following is an analysis of the search results for the Cramer Hall 1
st
 Floor search: 

CRAMER HALL 
Total Searchable 

Nodes (NS) 

Total Traversed 

Nodes (NT) 

Search Path 

Node Length 
Ratio NS/NT 

Dijkstra 11947 11135 322 93.2% 

A* 11947 1364 311 11.4% 

 

 

Conclusion 

Both the A* and Dijkstra algorithms discovered the endpoint, however the A* algorithm did it with less 

searching and with far more efficiency and speed. The ratio of the actual-searched space vs. total 

searchable space is a good indication of each algorithm’s effectiveness. The A* algorithm is only 

implementable if the distance to the endpoint can be determined. This extra information allows the A* 

algorithm to be a more informed and therefore be a superior algorithm. 

 

Simulations with a denser obstacle dense environment (first floor areas filled with obstacles) 

significantly reduced the performance gap between the two algorithms. This can mainly be attributed to 

the reduced total traversed nodes for the Dijkstra algorithm. 

 

In this application, every search path was determined by heuristics, except in rare cases where two child 

nodes had equal suitability. Heuristics had a very limited role in the generation of child nodes, just to 

disallow child nodes off-map or coincident with maze walls. Dijkstra and A* search strategies are both 

active search strategies in contrast to breadth-first, depth-first, and iterative depth-first searches. 
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